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ABSTRACT

This project addresses the isaue of developing interactive
rendering methods for datasets which cannot be stored on
a single hard driive or in main memory anymore. Our
dataset is a set of 14004dlices (single crosssedions) of a
monkey brain, which has been diced more than 15 years
ago at the Center for Neuroscience at UC Davis, and
recantly has been scanned at a very high resolution (more
than 10MB per image in compressd format). The
enormous resolution alows us to zoom from a global
view down to the cél level, al in one image This
exciting range of rendering options requires <salable,
multiresolution rendering techniques. The callenges we
encounter with this data set is an extreme misalignment of
the dlices due to manual placanent onto dass object
carriers and manua insertion in the film scanner. We
present a semi-automated method which compensates for
most of these atifacts and identifies those dlices that
cannot be handed and digned automaticdly. The
algorithm reduces the number of dices that need to be
treated manually enormously.
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1 INTRODUCTION

Large-scale biomedical data sets, such as CT, MRI or
PET scans, cryo-sections, confocal laser-scanning
microscopy, and other automated imaging tedhniques,
provide series of 2-D crosssedions, which are usualy
perfedly aligned. If the dicing is done manually, serious
misalignment might be encountered, which prohibits a
goad 3-D remnstruction of such data sets. However, the
quality and the resolution of those data sets makes it
desirable to use those diced brains, which have been cut
and preserved more than a decade ago, ingead o dicing
new ones.

Sets of more than 1400 dices (single crosssedions)
of a Rhesus monkey brain, which have been diced at the
Center for Neuroscience at UC Davis, and have now been
scanned at a very high resolution wsing a 35mm film
scanner, are now available. They have been scanned in
order to archive them eledronicdly and to preserve them
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for future studies. Each dice omprises of more than
10MB of image datain compressed JPEG format. Our test
dataset reveals detail ed information about the structure of
the brain down to thecdl level (Figure 1).

Figure 1: Cell level of abrain (detail)

Interactive visualization of large-scale datasets requires
advanced techniques in image processng, hierarchica
data management, and data reduction. Our goa is the
development of interactive visuaization tedniques for
large-scale datasets based on hierarchical representations
and immersive visualization environments, such as the
Virtual Workbench (stereoscopic display device with
interaction facilities), or the CAV E™. We want to explore
these 3-D datasets in an intuitive way at high resolution
and at unrivaled predsion. The main probem is the
alignment of the dlices. This paper addresses ome of the
chall enges we encountered.

2 SCANNED IMAGE DATA

The dlices have been scanned at a resolution of 3000dp,
which corresponds to a distance of 0.08 um between
pixds (Figure 2). This enormous amount of detail makes
it possble to zoom down to the cdl level. A purple dye
has been used to mark the cél nuclei, which are now
visible as darker spotsin theimage (Figure 1).

Fortunately, two metal pins were pushed through the
brain before dicing. These pin holes can now be used for
registration and for initial aignment. Since the three
pieces were glued on the plate separately, they need to be
registered separately. Advanced methods, such as contour
finding, morphing and warping, will be discussed later
[7.,8]. First, we ae going to focus on the registration
marks.



Figure 2: Rhesus morkey brain

3 IMPLEMENTATION

3.1 SCALING

The average size of the dices is 4500x3M0 pixels. In
order to find the registration marks (pin holes), we do not
need the full resolution. We can spead up the dgorithm by
reducing the size of a single dice by a factor of eight in
each dimension. This gives us an image which can be
displayed on a reguar computer screen. Thus, it is
necessry to dedmate the data set by interpolating a set of
points and replacing them by a suitable representative.
This way, features can be preserved which might
otherwise get lost. Basicdly, we are averaging over a
sguare region to interpolate the data in two diredions
(Figure 3).

Scaling Factor

Figure 3: Scaling procedure

The main goals of the scding algorithm are competitive.
Thereis atrade-off between performance and predsion of
detedion of the pin hole location in the full -scale image.
To med the firg goa is fairly easy. The main problem
that causes latency is I/O. Therefore we try to avoid all

intermediate functional layers for accessng the files and
make dired use of standard C++ classs like f st r eam
and i ost ream They offer unrivaled performance and
immediate accessto a block record on the hard drive.

The main steps of this part of the algorithm are the
following:

1. Openfileasifstream
ifstreamf(file_nane)

2. Buffer it with istream:

3. Read datablock (block height isthe number of

rows to interpol ate):

f.read(buf, size);

4. Interpolate wlors;

5. Saveto autput file:
of .write(obuf, osize);

6. Continuewith next block.

The seaond goal is to crede a reasonable, down-scaled
representation of a dice Basicdly, we use averaging o
colors of adjacent pixels (Figure 3). In most cases it is
sufficient to consider gray levels only rather than actua
colors. The number of points in a row or column for
averagingisthe square of the reduction factor.

3.2 ALIGNING

In order to creae ahigh-quality 3-D modd of the Rhesus
monkey brain, the individua parts neal to be aligned. A
first cueis given by the position of the registration marks.
This sedion describes how to identify those marks within
alarger image.

The dgorithm implements the foll owing steps:

» Find Bounding Box — determine the redangular area
where the data set is actually located within a
particular dice

»  Find Mark Center — determine the center of agiven
registration mark;

» Locate Marks- determineif thereisaregistration
mark within alimited range.

3.3IDENTIFYING A BOUNDING BOX

Sinceall dices are in a dightly different position on the
glassplate and in the scanner areg it is necessary to find
the object within a scanned image. Thefirst step to realign
the dicesisto findabounding box, i.e., aredangular area
defining the boundaries of the objed (Figure 4).

The main principle of determining the elges of a
bounding box is to search the image from all four sides
until a dgnificent change in the color value is
encountered. We use a general, differential approach,
which deteds bath trangtions from positive to negative
and from negative to positi ve.
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Figure 4: Bounding box

Mathematically, this corresponds to the derivative of the
color value function:
d i, i

dx X, =%

Since we have a discrete @ordinate system and unit
coordinates, we @n writeit as:
di

7:|
dx  °

Scanning is dmilar for al sides (with different search
diredions). Let us consider some techniques that helped
us to develop the final version of the dgorithm. It should
be mentioned that this method works bath for images with
light background (given example), and aso for images
which typically have a dark background (CT or MRI
scans).

A bruteforce method would be to compare
neighbaring pixel colors. If the difference is sgnificant,
we @n asume that an edge has been found. This would
work fairly well on images with high contrast, low noise,
and well-defined contours. All three criteria are not met
by our particular data set. The pixe seach agorithm
would terminate too early and probably falsdy deted
some noise and accept it as the start pixel for an object
withinadlice

So the next step we neel to do is to eiminate the
influence of noise pixels. This can be done by blurring a
picture in the diredion of the seach agorithm. Thereisa
dight difference between finding a battom or top edge
and finding a left or right edge. In the first case, pixels
must be blurred in horizontal diredion (Figure 5),
whereas for the second case, pixels must be blurred in
vertical diredion (Figure 6).

We learned that blurring helps to smoath out noise
pixds very efficiently, so tha we @n apply our
differential pixel seach method to identify the object
boundaries.

The following sedion describes the blurring
algorithm. The method is Smilar to motion blurring. Fird,
the number n of points which are supposed to be
averaged, and two huffers, one for the origina image
(obuf) and one for the blurred image (bbuf), must be

ly

introduced. Every row or column is blurred in the same
manner.

Figure 5: Horizontal blurring

Figure 6: Vertical blurring

The dgorithm accumulates the first n color values and
stores them in ai. For each i > n, the foll owing operations
are performed (note that the array index begins at 0):

1. Let n=number of pointsto be averaged.
2. Average pixel values and store the value in a bbuf

buffer cdl: bbuf,_, =avg(ai) .

3. Subtract value (i-n) of original buffer obuf from
accumulator ai: ai = ai —obuf,_, .

4. If end of lineisnot reached (i < m, wheremisthe
line length), then add valuei of original buffer obuf

to accumulator ai: ai = ai + obuf; .

5. Otherwise, deaement n.
6. If n=0, gotothenext line; otherwise repeat from
step 2

The dgorithm above blurs images quite dficiently. The
guestion that remains iss What do we consider a
significant change in color values? Generaly, this
difference may be expressed in absolute @lor valuesor in
a percentage ratio. Measuring absolute values can be
problematic as the range of color values varies on
different pictures. The same holds for percentage values,
because the deviation from the average value dso varies
in a wide range. The solution is to normadize the
histogram and find minimum and maximum color values,
and then use afixed threshold.

Again we nedl to seach the entire picture, and, for
similar reasons, blur the image while seaching to avoid



running into local minima or maxima. Figure 7 shows
how a picture with a black spot considerably changes after
blurring. Insteal of deteding a single dot as an a
extremum or a boundary condition, the spot amost
disappeas in the blurred image. This effed is desired.
Only objects of a reasonable minimum size ae taken into
acoount for the boundary search.
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Figure 7: Dark spot (artifact) before and after vertical blurring
(diceno. 5041400

After finding the extreme wlor values, the interpolation
of the current color valueis sraightforward. Basically, the
lowest posshble value is 0%, whereas the highest is 100%
(Figure 8). The actua values must be mapped to this
scale.

— 255
100% p7— 212 -max image intensity
80% E4— 195 -current image intensity
0% F4— 128 -min image intensity
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Figure 8: Color value interpolation

The @ombination of image normalization and filtering o
local extrema allows us now to search for the boundaries
of the boaunding ba. But here we encounter another
problem. What if the color values between adjacent pixels
change only gradually? Then our threshold method would
never apply, even if there ae large overal variations of
color values. The following example will illustrate this
problem.

The firg attempt was to ched if the difference d
between two adjacent pixels was greater than a certain
threshold:

di =i —i;
Even if this approach looks very straightforward, it does
not work. Thereason is that either the original data set or

the blurred image eposes only gradual changes in color
values when compared to local neighbars (Figure 9).
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Figure 9: Color value gradient

As can be seen, there is no significant change between
adjacent pixel colors with resped to the total color value
range. Thus, all these @ses will be ignored, while in

redity this sequence of pixels might represent the object
boundary.

This observation calls for an improved method. At
first sght, it might seem to be sufficient to compare not
dired neighbors, but pixels within a cetain dstance eg.,
for pixel 1 it would be the 39 the 4™ and so on.
Unfortunately, it does not work either, as in real data the
difference between such pixels can be very small. So even
comparing pixelswithin a cetain distance would not give
acorred result (Figure 10).
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Figure 10: Real gradient

However, a caeful observation shows that despite the
small difference between the 1¥ and the 9" pixél, thereis
a trend towards darker pixels throughout the sequence
Thus, to determine a edge of an object, an accumulated
difference ca be used (Figure 11).
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Figure 11: Accumulated dfference

The main seach algorithm works in the foll owing order:

1. Starting from the second pixel in each line ched if
there is any differencein the wlor values of the n-th
and (n-1)-th pixels:

di, =i —i,_, >threshold ?

2. If yes, then chedk the Sgn of the difference if the sign
is the same as previous, add color vaue to
accumulator; otherwise increment n, reset switches,
and return to step 1:

. [0,sign(di,,) # sign(di,_,);
a=ng. . . . . .
rai +i,,sign(di,) =sign(di,_,).

3. Ched if accumulated color value is bigger than
adlowed deviations, if yes, then an edge is found;
otherwise if the number of accumulations equals the
maximum accumulation depth then increment n, reset
switches, andreturn to step 1 (see?2).

4. Increment n; if the end of the line isreached, go to the
next line.

Finaly, it should be mentioned that finding the vertical
bounding bax edges of the object differs from finding the
horizontal ones by the fact that it is not necessary to use
the despedkle filter on the whole picture aain; it is
sufficient to Hur the current line that is under processng.
The firg pass(minimum and maximum seach with filter)
can actually be used for one diredion of the bounding
edge finder. For the other diredion, the orientation of the
filter is perpendicular. There is no neal to seach for
minimum and maximum color values for bath



orientations, as in practice the limits found from the
horizontally blurred image ae not consderably different
from the ones found in the verticdly blurred image. For
largeimages this fact noticegbly increases performance

3.4FINDING THE CENTER OF A
REGISTRATION MARK

As mentioned ealier, the data set features two registration
pin holes, which can be used to aign the dices.
Unfortunately, each dice onsist of several pieces that
have been positioned manually. Therefore the distance
and orientation among the pieces varies from dlice to
dice Two registration holes in two separate pieces are not
sufficient to register the ettire data set. However, they
provide a good starting point. These two points will
become the fix points (Pivot points) for the regisration.
Other features, such as contour polygons, must be taken
into account in order to do a proper aignment. Pattern
matching algorithms, which can be used to identify
similar sets of contour points in two adjacent dices or
even across gveral dlices have been developed before [9].
This paper focuses on the Pivot points and describes a
method to localize those points by making use of spatial
coherence and similarity. Image similarity is only given if
the object islocated in the same range or window. Thisis
guaranteed by the bounding box method described in the
previous fdion.

The dgorithm garts from a di ce somewhere nea the
center where bath regigtration marks are present. The user
then sdeds the two pin holes with the mouse. This step is
not automated, because the data set exposes many similar
features, which could be migtaken for pin holes. It is not
very time-consuming for the user to seded those two
points, but we want to avoid that the user needs to go
through dl 1400 dlices to sded those points. The
algorithm does this automaticdly by searching a small
neigborhood o the sdeded pin hole in one of the
adjacent dlices. The algorithm seaches in bath diredions
urtil it reachesthe last dliceon each side.

The search method is based on a polygon flood fill
algorithm with 8-neighborhood adjacency [2]. We
suppose that a spot is a @mnvex discrete polygon. The
algorithm fill s the entire aea of the pin hole with the
same mlor as the pixd that was sleded and counts how
many pixels werefill ed.

>
i a

Figure 12: Concave hole

It returns the barycenter of those filled pixel locations,
which corresponds to the center of the pin hole (provided

it was convex, which we @n safely asame). In case of a
concave hole, the barycenter may be located outside the
actual spot (Figure 12). Obvioudly, it is very difficult for
the user to put the seed point exactly in the center of the
pin hole. That is why this algorithm is very useful for
identifying this point (Figure 13).
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Figure 13: Registration mark (user-marked, close-up)

Thefloaod fill agorithm can be easily implemented asa
reaursive function:

1. Start from seel point.

2. If current pixd is of the same or similar color as the
starting point, then fill it; otherwise go to step 5.

3. Increment the number of processed pixels and add
coordinates to accumul ators.

4. For each of the 8 neighbor pixds, rearrsively call this
procedure.

5. Return barycenter (averaged coordinates, sum of
acaumulated coordinates divided by number of
processed points).

3.5LOCATING REGISTRATION MARKS
IN ADJACENT SLICES

After finding the center of a given registration mark, it is
posshle to use these mordinates to locate the same mark
on another dice The seach method is based on severa
aspeds. Firgt, the wlor of a pixel should match the color
of the Pivot point in the previous dice Semnd, the size,
i.e, the number of pixes within the pin hole, should
roughly match.

Basicaly, finding a corresponding mark in an
adjacent dlice works pretty much the same as finding the
center of the pin holein the referenceimage:

1. Start from the Pivot point.

2. If the color of a pixel roughly matches the color of
the mark in the previous dice, then go to step 3, else
gotostep 4

3. If size of the mark roughly matches the size of the
mark in the previous dice then goto step 5, else goto
step 4.

4. For each of the 8 neighbor pixds, rearrsively call this
procedure.

5. Cadll previous algorithm (sedion 34) to determine
center.



4 RESULTS

The methods described in the previous dions have been
applied to alarge volumetric data set of a Rhesus monkey
brain, which consists of 1400 dices, each about 4500 x
3000pixels (sze varies dightly). Thetotal size of the data
st is about 76 GB. We were looking for automated
alignment methods to reduce the number of dices that
neel to be loaded into an editor and manipulated by hand.
The dgorithm creates a log file which stores the pixe
positions in world coordinates for each registration mark
in the dice If no registration mark was found within a
ceatan seach radius, the diceisregjeded and marked for
manual handling. The bounding box method helped us to
avoid tedious cutting operations, and the pin hole method
provided us with the Pivot points for piecealignment. We
observed that the window size for the despedkle filter
makes a big difference on the quality and predsion of the
bounding box. As the main goal of blurring is to reduce
inconsistencies in images, it is important to find an
optimum window size.

Overlapping whil e blurring aso has a big impact. A
larger overlap gives a better smoathing effect but it aso
creates a fuzzier gradient that may lead to failure in
finding the boundary edges. On the other hand, reducing
overlap sometimes causes features to be overlooked.
Figure 14 shows a case where averaging results in losing
edgeinformation.

\/

Figure 14: Non-overlapping blurring — original and average

5 CONCLUSIONSAND FUTURE WORK

We have discussd a flexible method for the detedion of
registration marks in large-scale biomedical data sets.
This method will enable biologists and physicians to
make use of thousands of objeds that have been dliced in
the past and are now scheduled for eledronic archiving in
order to preserve them for future generations before they
deteriorate. High-resolution scanning tedhnology and
high-performance storage systems will make those scans
available to a much wider audience In order to
understand the threedimensional gtructure, it is desirable
to be able to remnstruct the original volume from the
dices. Our algorithm provides some robust techniques for
windowing, object detedion, and registration of the
dices. Future work includes the aldition of feature
detedion dgorithms, which will overcome problems sich
as ome uncetainty as how to match polygons with
different numbers of vertices, different lengths of edges,
etc. Some of these problems have been addressd in a
related paper [9].

Our agorithm isable to find registration marksin an
image series with high certainty. These marks will be the
fix points (Pivot points) of a morphing or warping
algorithm. Each object will be triangulated, and we @n
use these points as a owmmon point shared by all triangles
inside theobjed.

The arrent algorithm can be esly extended to
deted other unique features, which are similar in adjacent
dices, even if they are only dominant in a local domain.
Thiswill provide additional registration points, which will
lead to a better 3-D remnstruction.
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